Dr. Guodong Long is an Associate Professor in School of Computer Science, Faculty of Engineering and IT (FEIT), University of Technology Sydney (UTS), Australia.
He is currently leading a research group to conduct application-driven research on machine learning and data science. Particularly, his research interests focus on several application domains, such as health data analysis, climate change and IoT. He is dedicating on exploring the blue-sky research ideas with real-world value and impact.
We are looking for self-motivated PhD candidates to explore the research direction on federated learning and its applications, please send the CV if you are interested to join in Guodong’s team. More information at here
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
Meta-learning extracts common knowledge from learning different tasks and uses it for unseen tasks. It can significantly improve tasks that suffer from insufficient training data, e.g., few shot learning. In most meta-learning methods, tasks are implicitly related by sharing parameters or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve few shot learning. The graph’s structure is usually free or cheap to obtain but has rarely been explored in previous works. We develop a novel meta-learner of this type for prototype-based classification, in which a prototype is generated for each class, such that the nearest neighbor search among the prototypes produces an accurate classification. The meta-learner, called “Gated Propagation Network (GPN)", learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism aggregates messages from neighboring classes of each class, with a gate choosing between the aggregated message and the message from the class itself. We train GPN on a sequence of tasks from many-shot to few shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, under different training-test discrepancy and test task generation settings, GPN outperforms recent meta-learning methods on two benchmark datasets. The code of GPN and dataset generation is available at URL above.
Recurrent neural networks (RNN), convolutional neural networks (CNN) and self-attention networks (SAN) are commonly used to produce context-aware representations. RNN can capture long-range dependency but is hard to parallelize and not time-efficient. CNN focuses on local dependency but does not perform well on some tasks. SAN can model both such dependencies via highly parallelizable computation, but memory requirement grows rapidly in line with sequence length. In this paper, we propose a model, called “bi-directional block self-attention network (Bi-BloSAN)", for RNN/CNN-free sequence encoding. It requires as little memory as RNN but with all the merits of SAN. Bi-BloSAN splits the entire sequence into blocks, and applies an intra-block SAN to each block for modeling local context, then applies an inter-block SAN to the outputs for all blocks to capture long-range dependency. Thus, each SAN only needs to process a short sequence, and only a small amount of memory is required. Additionally, we use feature-level attention to handle the variation of contexts around the same word, and use forward/backward masks to encode temporal order information. On nine benchmark datasets for different NLP tasks, Bi-BloSAN achieves or improves upon state-of-the-art accuracy, and shows better efficiency-memory trade-off than existing RNN/CNN/SAN.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, “Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.
Time series has been a popular research topic over the past decade. Salient subsequences of time series that can benefit the learning task, e.g. classification or clustering, are called shapelets. Shapelet-based time series learning extracts these types of salient subsequences with highly informative features from a time series. Most existing methods for shapelet discovery must scan a large pool of candidate subsequences, which is a time-consuming process. A recent work, [1], uses regression learning to discover shapelets in a time series; however, it only considers learning shapelets from labeled time series data. This paper proposes an Unsupervised Salient Subsequence Learning (USSL) model that discovers shapelets without the effort of labeling. We developed this new learning function by integrating the strengths of shapelet learning, shapelet regularization, spectral analysis and pseudo-label to simultaneously and automatically learn shapelets to help clustering unlabeled time series better. The optimization model is iteratively solved via a coordinate descent algorithm. Experiments show that our USSL can learn meaningful shapelets, with promising results on real-world and synthetic data that surpass current state-of-the-art unsupervised time series learning methods.
News Report 2018, Our work on Cyberbullying Prevention was reported by UTS Newsroom
A paper co-authored with Department of Health won the runner-up paper award on Australia Data Mining Conference 2019.
A paper was published at ICDM 2019.